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Modulated structures in electroconvection in nematic liquid crystals
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Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we
study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of
a weakly damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned
case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field.
The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal
rolls, which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director. We
present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter
range where the zigzag instability is not relevant these solutions are stable attractors, as observed in experi-
ments. We also present two-dimensionally modulated states with and without defects which result from the
destabilization of the one-dimensionally modulated structures. Finally, for no~or very small! damping, and
away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of
defect chains~or bands of defects! separating homogeneous regions of oblique rolls with very small amplitude.
These states may provide a model for a class of poorly understood stationary structures observed in various
highly conducting materials~‘‘prechevrons’’ or ‘‘broad domains’’!.

DOI: 10.1103/PhysRevE.67.031701 PACS number~s!: 61.30.Gd, 47.20.Ky, 47.65.1a
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I. INTRODUCTION

Nematic liquid crystals, the simplest type of intrinsical
anisotropic fluids, continue to provide model systems fo
wide variety of interesting nonlinear dynamical phenome
like optical instabilities@1#, flow-induced nonlinear wave
@2#, critical properties of nonequilibrium transitions@3#, and
in particular electrically or thermally driven convection in
stabilities@3,4# ~see also Ref.@5# and references therein!.

In nematics the mean orientation of the rodlike molecu
is described by the directorn̂. Electroconvection~EC! driven
by an ac voltageU at frequencyv is commonly observed in
thin nematic layers sandwiched between glass plates
transparent electrodes using nematics with positive cond
tivity anisotropy (sa.0) and negative or slightly positive
dielectric anisotropyea . In the well studiedplanarly aligned
case, wheren̂ is anchored parallel to the bounding plat
along a direction which we will take asx ~we choose the
layer in thex-y plane! EC sets in directly from the homoge
neous state at a critical voltageUc(v) and leads slightly
above threshold to ordered roll patterns associated wit
periodic director distortion with the critical wave vecto
qW c(v). Here we will only consider the most common situ
tion, where the bifurcation is supercritical and leads to s
tionary rolls withqW c parallel tox̂ @normal rolls~NRs!#. In the
usual low-frequency conduction regime, where the wa
length is controlled by the cell thickness, this may exclude
particular very low frequencies, where the rolls at thresh
may be oriented obliquely~depending on the material!. In
NRs near threshold the director remains in thex-z plane, i.e.,
perpendicular to the roll axis.

The investigation of homeotropically oriented cells usi
nematics with manifestly negative dielectric anisotropyea
,0 was initiated rather recently, see Refs.@6–9# for experi-
1063-651X/2003/67~3!/031701~12!/$20.00 67 0317
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mental and@10–12# for theoretical work. In this case th
director is initially oriented perpendicular to the layer, i.e.,
the z direction, so the system is isotropic in thex-y plane.
Then the first instability is the spatially homogeneous Fre´ed-
ericksz transition where the director bends away from thz

direction, singling out spontaneously a directionĉ in thex-y
plane. After the transition the slow, undamped variation

the in-plane directorĉ ~the Goldstone mode! may be de-
scribed by an anglef. At higher voltages there is a furthe
transition to EC, which is in many respects similar to that
cells with planarly aligned nematics. However, now t
Goldstone mode has to be included in the description e
right at threshold. It turns out that the torque arising wh
the in-plane director and the wave vector are~slightly! mis-
aligned is destabilizing, i.e., it acts to increase the misali
ment ~‘‘abnormal torque’’!. Then the in-plane director in
NRs is not perpendicular to the~local! roll axis. These NRs
with a misaligned in-plane director were termed abnorm
rolls ~ARs! @6#. Furthermore one may expect spatiotempo
disorder right at threshold and this has indeed been obser
at least in the oblique roll regime, where one expects fa
dynamics@9,11,13#. For NRs the experimental situation
not totally clear@13#.

By applying an in-plane magnetic field, which now d
fines thex direction and exerts an aligning torque onĉ, the
disorder at threshold can be suppressed. Indeed the situ
then is similar to that in the planar case. However, for a sm
field a small abnormal torque will suffice to overcome t
magnetic alignment, and then one has a transition to orde
ARs, where the in-plane director is homogeneously rota
out of the x direction. For NRs this symmetry breaking
spontaneous, either to the left or to the right, and the tra
tion is described by a supercritical pitchfork bifurcatio
which has been verified experimentally@14,15#.
©2003 The American Physical Society01-1
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In the planarly aligned case one also has a transition
ordered ARs, although this occurs at a distance from thre
old such that a quantitative description is more difficu
Since now the director is aligned at the cell boundaries
distortion of the in-plane director is confined to the cen
part of the cell leading to a twist distortion. Incidentally, th
is the reason why the phenomenon has been identified
recently in planar convection@16#. By applying a magnetic
field in the y direction one can now destabilizeĉ and thus
move the AR transition downward towards the primary
stability. The AR transition merges with the primary bifurc
tion when the field reaches the strength of the twist Free
icksz field. When the two transitions are near each othe
simple reduced description can be used. This shows tha
two classes of systems are similar in many ways.

Above the AR transition one often observes more com
cated structures with or without defects. In particular, in h
meotropic EC, modulations of the AR mode have been
served which leave the roll pattern~i.e., its phase! virtually
unchanged@14,15#. Ideally, such structures can be consider
quasi one dimensional~1D! with spatial variations only per
pendicular to the~normally oriented! rolls. We wish to ad-
dress in particular such structures by studying the simp
set of coupled amplitude equations capable of describing
AR scenario. These equations were first derived for hom
tropic systems near threshold@11,17# but with a slight gen-
eralization they can also illustrate the planar case. We pre
here 1D solutions of the appropriate type. We will th
briefly discuss the destabilization of these 1D structures.
nally we present a new class of fully ordered 2D solutio
occurring at higher voltage~or smaller magnetic fields! in-
volving periodic arrangements of defect chains~or bands of
defects!. We call them static chevrons since they are rem
niscent of the dynamic chevrons observed in the dielec
range of EC, and more recently, also in homeotropic conv
tion @13#.

Our results could also be of relevance for the high
frequency dielectric regime, where the rolls are very narr
and therefore the orienting effect of planar boundary con
tions is substantially weaker than in the conduction ran
Recently, the weakly nonlinear description of the dielect
regime in planarly aligned systems has been investigate
detail @18#.

In Sec. II we discuss the basic equations, which take
form of an activator-inhibitor system, and their homogeneo
solutions. In Sec. III we study 1D modulated solutions. Th
stability within the full 2D equations is investigated in Se
IV A and in Sec. IV B some 2D structures, in particul
defect-free solutions, are presented. In Sec. V we presen
static chevron states. We conclude by putting our results
a more general context, relate them to experiments,
present an outlook.

II. BASIC EQUATIONS
AND HOMOGENEOUS SOLUTIONS

In situations where the in-plane director, described by
anglew measured from thex direction, becomes an activ
mode already near the threshold to NRs one can describ
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system by the following set of coupled Ginzburg-Land
equations for the complex patterning modeA and the slowly
varying anglew @11,17#:

ť] ť Ǎ5@«1jxx
2 ] x̌

2
1jyy

2 ~] y̌
2
22iqcC1w] y̌2C2w2!2guǍu2

1 i ň] y̌w#Ǎ, ~1!

ǧ1] ťw5K1] y̌
2
w1K3] x̌

2
w2Tw

1
G

4
@2 iqcǍ* ~] y̌2 iqcw!Ǎ1c.c.#. ~2!

Here we have chosen thex direction along the wave vecto
of the NRs. The anglew of the in-plane director is measure
from thex axis. The validity of Eqs.~1! and~2! is restricted
to small values of the reduced control parameter~more pre-
cisely «/g!1 and anglesuwu!1). Special attention should
be paid to the sign of the parameterG. If G were positive the
field w would be stabilized by the roll pattern. However,G is
negative, at least for the standard nematics which have b
used in relevant experiments@11,17,18#. This gives rise to
the transition to abnormal rolls and to interesting dynami
phenomena. Note thatjyy tends to zero at the transition from
normal to oblique rolls at threshold.

The equations can be justified most convincingly for h
meotropic orientation near the EC threshold~reduced control
parameter«!1). Overall rotation invariance then require
that the three terms multiplyingjyy

2 in Eq. ~1! combine to
(] y̌2 iqcw)2, so that C15C251. Without the isotropy-
breaking term2Tw, which is realized easily by an in-plan
magnetic field~then T5x̌aH2), the anglew may not satu-
rate. Then one has to resort to a globally rotational invari
generalization of Eqs.~1! and ~2! @17,11#. We will see that
this is not always necessary.

The parametersC1 ,C2 were introduced to allow for more
general situations like in planar alignment~for structural sta-
bility one needsC2.C1

2.0). Then the magnetic field term
in Eq. ~2! actually models the orienting effect of the boun
aries. In the common conduction range, where the wa
length is of the order of the cell thickness, the orienti
effects are sufficiently strong so that interesting dynamics
w sets in at values of« which are too large to allow quanti
tative description by Eqs.~1! and ~2!. Then, in particular,
singular mean flow has to be included@19,20#. To reduce the
damping ofw one can either apply a destabilizing in-plan
magnetic field and/or go to the dielectric range, where
effect of boundaries is weaker@18#. When T becomes too
small higher-order terms are needed in Eq.~2!.

For calculations it is useful to introduce a scaled vers
of Eqs.~1! and ~2! for «.0,

t] tA5@11]x
21]y

222ic1f]y2f22uAu22 in]yf#A,
~3!

] tf5D1]x
2f1D2]y

2f2hf1F i

2
A* ~c2]y2 if!A1c.c.G ,

~4!
1-2
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MODULATED STRUCTURES IN ELECTROCONVECTION . . . PHYSICAL REVIEW E67, 031701 ~2003!
where

Ǎ5~«/g!1/2A, w5«1/2f/~jyyqcAC2!,

x̌5jxx«
21/2x, y̌5jyy«

21/2y, ť52ǧ1gt/~«uGuqc
2!,

t5 ťuGuqc
2/~2ǧ1g!, n5 ň/~jyy

2 qcAC2!,

D152K3g/~ uGuqc
2jxx

2 !, D252K1g/~ uGuqc
2jyy

2 !,

c15C1 /AC2, c25AC2, h52Tg/~ uGuqc
2«!. ~5!

The damping parameterh gives the ratio of the aligning
~5isotropy breaking! torque over the abnormal torque o
NRs. For large values ofh one can setf50 and disregard
Eq. ~4!. h can be decreased by either decreasing a stabili
magnetic field~increasing a destabilizing field! or by increas-
ing «. Below we will show that, keeping the aligning torqu
fixed, one can write

h5«AR /«, ~6!

where«AR is the reduced control parameter, where the tr
sition from NRs to ARs takes place. The parametern de-
scribes the action of the gradient of the in-plane director
the phase of the rolls. Experimentally it can be controlled
varying the frequency. In this paper, we will be concern
with the rangen.0, where NRs are first destabilized by th
transition to ARs~see below!. Forn,0 the zigzag instability
comes in earlier. Various features of Eqs.~3! and ~4! have
been analyzed in Refs.@11,17,21# and comparison with ex
periment has given evidence for their validity.

We first discuss the homogenous solutions of Eqs.~3! and
~4! for rolls with modulation wave vector (Q,P) whereA
5A0ei (Qx1Py), A0>0, and a constant in space anglef
5f0. One is left with the dynamical system

t] tA05@12Q22P212c1Pf02f0
22A0

2#A0 ,

] tf05~A0
22h!f02c2PA0

2 . ~7!

These equations can be classified as an activator-inhib
system with activatorA0 ~positive linear growth rate for no
too large wave vector! and inhibitorf0. For simplicity we
will in the following considerQ50 ~the results are easily
generalized!. For P50 ~rolls exactly in thex direction; we
will deal with this case, except in Sec. V! there is the sym-
metryf→2f. The basic uniform stateA050, f050, is an
unstable solution of Eq.~7!, and the NR stateA051, f0
50, is stable only forh>1. Finally, the abnormal roll~AR!
states

AAR5Ah, fAR56A12h ~8!

exist in the range 0<h,1. They bifurcate from the NRs a
h51 and they break the symmetryf→2f of the equations.
For h.0 the two AR states are global attractors with regio
of attraction A0.0, f0. or ,0, respectively. Forh
.4t/(114t) the AR states represent saddles~two real ei-
genvalues!, otherwise spiral points.
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The caseh50 needs special attention. Clearly the who
band

A050, f05const ~9!

is the solution of the equation. The segmentuf0u,1 is re-
pulsive, whereas the regionsuf0u.1 are attractive. The AR
state~for h50) separates the two cases. There is a separa
A0

211/(11t)f0
251, which separates trajectories flowin

out of the repulsive segment from those coming from infi
ity.

The degeneracy forh50 is presumably realistic for ho
meotropic EC. It is a consequence of rotational invarian
For planar EC the degeneracy is removed by higher-or
terms, in particular a term proportional tof3 in Eq. ~4!.
Nevertheless it is instructive to study this limit where resu
simplify.

III. 1D MODULATED STRUCTURES

Next we consider modulated structures that leave the
pattern untouched, i.e., which do not involve the phase of
complex fieldA. This can occur generically only for spatia
variations alongx. Then the equations take the form

t] tA5~]x
2112A22f2!A, ~10!

] tf5~D1]x
21A22h!f. ~11!

In this section we will study these equations. We will choo
A.0.

A. Single domain walls

We start by discussing domain walls that connect the t
variants of AR solutions and their interaction. Near the A
transition (h near 1! domain walls attract each other, so th
modulated states are unstable. This can be seen from the
that for 12h!1 the amplitude can be eliminated adiaba
cally from Eq.~10! leading to

] tf5~D1]x
2112h2f2!f. ~12!

In this equation all modulated states~they can be expresse
in terms of an elliptic integral! are unstable, although the
lifetimes are exceedingly long due to the exponentially we
~attractive! interaction between well separated domain wa
~see below!.

Surprisingly, for lower damping, the interaction acquir
repulsive parts, so that stable modulated structures
emerge. In fact, forh→0 the interaction becomes pure
repulsive so that onlyperiodic modulations exist~see be-
low!.

Actually, for h50 a static domain wall solution can b
found analytically. It reads

Aw~x!5A0 sech~bx!, fw~x!5f0tanh~bx!, ~13!

where
1-3
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KOMINEAS, ZHAO, AND KRAMER PHYSICAL REVIEW E 67, 031701 ~2003!
b25
1

112D1
, A0

252D1b2, f0
252~11D1!b2.

~14!

It selects the statesA5A0 ,f56f0 from the continuum of
states~9!. We have checked numerically and could find
stable static domain wall solution other than Eq.~13!. We
note that sincef0

2.1 Eq. ~13! connects stable states.
We mention that stationary wall~13! is embedded in a

continuous family of moving walls connecting inequivale
states~9!. Their study is beyond the scopes of the pres
paper.

Since forhÞ0 the walls can connect only to the AR stat
and fAR→61 (Þf0) for h→0, this limit has to be clari-
fied. An example of a numerically stable~within the 1D
equations! wall for small h is shown in Fig. 1. The fields go
to their AR values at spatial infinity. However, in the wa
region the fieldf exhibits an overshoot approaching the v
ues 6f0 of Eq. ~13!. The overshoot becomes longer a
approaches nearer to6f0 ash→0.

In order to understand this behavior better, we study
spatial decay of the solution into the AR state. This is o
tained by linearizing Eqs.~10! and ~11! around an AR solu-
tion and calculating the spatial exponents. They are

p6
2 5h6Ah22

4h~12h!

D1
. ~15!

For h→0 the exponents are complex and tend to zero, wh
explains the slow decay. The exponentsp6 remain complex
for damping constantsh,hosc[(11D1/4)21. We will show
that this is the bound up to which domain walls may re
and thus form stable bound states.

B. Interaction of domain walls, modulated structures

In simulations of Eqs.~10! and~11! one easily finds stable
stationary solutions with more than one domain wall. In p
ticular there are periodic solutions which come in two va
eties: those that preserve the global symmetryf→2f
~symmetric! and others that do not preserve it~nonsymmet-
ric!. This section is mainly devoted to periodic solution

FIG. 1. Domain wall solution connecting the two abnormal r
statesA5h, f56A12h for D150.2 andh50.01.
03170
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There are also pulse-type states localized around one o
AR solutions as well as nonperiodic extended solutions.

Let us first approach these modulated solutions from
side of large separation between domain walls by study
their interaction. Repulsive interaction is a prerequisite
form stable periodic states and interaction of both signs
necessary to form nonperiodic arrays@22#. The problem is
formulated as follows. Two walls are placed symmetrica
around the origin at positions6x0. Then the fields have zero
derivative atx50. We now focus on the regionx.0, write
the amplitude and angle asA5Aw@x2x0(t)#1a@x
2x0(t),t#, f5fw@x2x0(t)#1w@x2x0(t),t# and substitute
these expressions into Eqs.~10! and ~11!. In the spirit of
small variationsand slow ~slaved! dynamics we keep the
terms linear ina andw, but neglect those that are small an
contain time derivatives

ẋ0tAw8 52~]x
21123Aw

2 2fw
2 !a12Awfww,

ẋ0fw8 522Awfwa2~D1]x
21Aw2h!w, ~16!

where the dot denotes time derivatives and the argumen
all functions isx2x0.

To satisfy the boundary conditions one needsa5Aw

2A` ,a852Aw8 andw5fw2f` ,w852fw8 at x50. At the
other endx→` the perturbationsa and w should vanish.
Multiplying Eq. ~16! by the adjoint of the translational mod
(Aw8 ,2fw8 ) and integrating from zero to infinity, we obtai
an equation that has, on the right-hand side, only the bou
ary terms atx50. On the left-hand side, the integrals may
extended to2` with negligible error leading to

~^fw8
2&2t^Aw8

2&!ẋ05Aw8
21Aw9 ~Aw2A`!2D1@fw8

2

1fw9 ~fw2f`!#, ~17!

where ^•••&[*2`
` dx•••. This formula can be used onl

when the term in brackets on the left-hand side is positi
i.e., for

t,taccel[^fw8
2&/^Aw8

2&. ~18!

Otherwise translation becomes an active mode, i.e., one
pects spontaneous acceleration of the domain wall. This
be shown by retaining the small time derivative terms om
ted in Eqs.~16!. We will here assume Eq.~18! to hold ~ex-
perimentally this appears to be the case! and comment briefly
on the acceleration instability at the end of this section.

In the special caseh50 and for wall~13!, expression~17!
can be evaluated leading to

@2~11D1!2tD1# ẋ0512D1be22bx0. ~19!

Thus, at least fort,taccelone hasẋ0.0, i.e., the interaction
among walls is repulsive everywhere. This is consistent w
the numerical observation of stable periodic solutions and
nonperiodic states.

For hÞ0, we may use the asymptotic behavior charac
ized by the exponents in Eq.~15! to evaluate the right-hand
1-4
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side of Eq.~17!. In the range of complex exponentsp6 , i.e.,
for h,hosc, the interaction is repulsive or attractive depen
ing on the distance between walls. Thus one expects st
periodic solutions in appropriate wavelength intervals as w
as nonperiodic structures, in agreement with simulations.
example of a periodic solution is given in Fig. 2 for a fie
valueh50.1.

Finally, in the monotonic rangehosc,h,1, the right-
hand side of Eq.~17! is

c2F D1p2
4

4h~12h!
21Gexp~2p2x0!, ~20!

where c is a factor that cannot be determined from t
asymptotic analysis andp2 is given in Eq.~15!. One easily
sees that the term in square brackets is negative, so tha
interaction between domain walls is now attractive. In t
range we expect neither stable periodic nor nonperiodic
lutions, although, as pointed out before, the lifetime
modulations may be very long.

Let us now continue the symmetric periodic solutions
small wavelengths. Since they conserve the globalf→2f
symmetry one expects them to bifurcate from the NRs. T
is indeed the case. From a simple linear stability analysis
finds that NRs are unstable with respect to periodic mo
with wave numberuqu,qc , where

qc~h!5A12h

D1
. ~21!

Indeed, the bifurcation is of supercritical type. In Fig.
which summarizes our results on symmetric periodic so
tions, the minimum periodLmin52p/qc(h) is shown~dotted
curve!.

When the~symmetric! periodic solutions are born the
inherit the instability of the NRs with respect to symmet

FIG. 2. A symmetric periodic solution forD150.2 and h
50.1. The dashed line gives the fieldA and the solid line the field
f. It is found by numerical simulation of Eqs.~10! and ~11! with
periodic boundary conditions.
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breaking. For a fixedh and by increasing the period we fin
that they are stabilized at some periodL1(h). The curve
L1(h) can be calculated by a linear stability analysis. It d
verges to infinity forh→hoscsince above this value no stab
periodic solutions are expected to exist according to
asymptotic analysis given earlier. AtL1(h) a branch of un-
stable periodic solutions with brokenf→2f symmetry bi-
furcates from the symmetric periodic solutions. We find th
the symmetric periodic solutions lose stability~for the first
time! at L2(h) in Fig. 3 and from here on one has a stab
nonsymmetric periodic solution, where long and short d
mains alternate. An example for such a solution is shown
Fig. 4 for h50.1. Clearly this is the result of the nonmon
tonic behavior of the interaction between domain walls. P
sumably the curveL2(h) also diverges athosc.

An example of a more complicated nonperiodic soluti
is shown in Fig. 5. Such states have been also observe

FIG. 3. Stability limits of the symmetric periodic solutions i
the period (5L) vs theh plane forD150.2. Below the lineL1 they
are unstable against breaking thef→2f symmetry, leading to
ARs. Above the lineL2 they are unstable against a symmetr
broken periodic solution. The dotted line gives the minimum per
Lmin52pAD1 /(12h), where the periodic solutions bifurcate from
NRs. On crossing the dashed line there is a zigzag instability th
either short wave~thin dashed! or long wave~thick dashed!. The
dash-dotted line is the limit of stability for the ARs.

FIG. 4. A nonsymmetric periodic solution forD150.2 andh
50.1. The dashed line gives the fieldA and the solid line the field
f.
1-5
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Ref. @22#. There is no definite distance between the walls a
there seems to be no repeated structure. The state ca
spatially chaotic.

Equation~17! indicates thatẋ0 diverges att5taccel. For
h50 one finds from Eq.~19!

taccel5
2~11D1!

D1
. ~22!

Computer simulations show that the static wall is unstab
for t>taccel, to a steadily traveling wall. One sees that
crossing the valuetaccel the wall is accelerated while th
direction of motion is spontaneously chosen@23#. No further
study of moving walls will be given in this paper. We fin
numerically thattaccel, as calculated from Eq.~18!, increases
with h @taccel(h50)512,taccel(h50.1).16.6,taccel(h50.5)
.26.6 for D150.2]. One could see this also by inspecti
the form of the walls.

IV. 2D SOLUTIONS

A. Stability of 1D modulations in the plane

In view of the experimental observation of period
modulations it is essential to study the stability of the so
tions discussed in the preceding section in the context of
full Eqs. ~3! and ~4! in two dimensions. In order to reduc
the number of parameters we will, in this section, consi
the casec15c251 appropriate for homeotropic system
Some results on the case whenc1 is smaller than 1 will be
given in the following section.

For AR solution~8! one can go through a standard line
stability analysis, which gives in the long wavelength lim
that, for n.0, ARs become unstable against zigzag per
bations ath52/3 @11,17,21#. We should also recall that AR
are born from NRs as a stable state ath51, which means
that they exist stably for

hAR[
2

3
<h,1. ~23!

The valuehAR is denoted by a dash-dotted line in Fig. 3. W
use in this paper parameter values typical for the stand
substance MBBA. Specifically we take@17#

FIG. 5. A nonperiodic solution forD150.2 andh50.1. The
dashed line gives the fieldA and the solid line the fieldf.
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D150.2, D250.5, t50.5, n50.6. ~24!

The positive value forn indicates that we deal with frequen
cies above the codimension-2 point, where the zigzag in
bility of NRs is not operative@11,16,17,24,25#.

In order to check the stability of the symmetric period
solutions found in the preceding section against tw
dimensional perturbations we have performed a numer
Floquet analysis. Thus we write the perturbationsa,w of a
periodic solutionAL(x),fL(x) with periodL as

a~x,y,t !5est1 isyy (
n52`

`

anexp~ i2pnx/L !, ~25!

w~x,y,t !5est1 isyy (
n52`

`

wnexp~ i2pnx/L !, ~26!

wherean ,wn are constants. We linearize Eqs.~3! and ~4! in
the perturbations and expand the coefficient functions in
linearized equation, which have the periodicityL, also in a
Fourier series. After truncation a system of linear equatio
is obtained, which can be solved numerically to give t
growth rates i(sy) for the linear mode with wave vectorsy .
The indexi runs over the number of Fourier modes used. T
number of modes necessary to achieve a prescribed accu
is found easily by numerical experimentation.

We have focused on periods which lie between the lim
L1 and L2 in Fig. 3, i.e., to solutions that are stable wi
respect tox perturbations. For parameter values~24! our re-
sults are included in Fig. 3~dashed line!. The thin dashes~for
7.5&L&13) indicate a short wave instability of the corr
sponding period when crossing the line to the left. The th
dashes~for 5.7&L&7.5) indicate a long wave instability. I
is most interesting that the present instabilities occur fo
value ofh considerably smaller thanhAR , which means that
there are stable periodic solutions for values ofh for which
the ARs are unstable.

We give the numerical values for the stability limits an
the wave vectorsy of the unstable mode for some period
solutions that we typically use in the simulations of this se
tion ~they fit into our typical system length of 64!:

period 8: 0.23,h,0.67, sy50.67,

period 9.14: 0.30,h,0.74, sy50.69,

period 12.8: 0.42,h,0.85, sy50.66.
~27!

The lower limit corresponds to the short wave instabil
along they direction with wave vectorsy . The upper limit is
due to the instability along thex direction ~curveL1 in Fig.
3!.

We conclude that by decreasing the parameterh ~which
corresponds to increasing the voltage or decreasing the m
netic field in a relevant experiment! below hAR the ARs be-
come unstable but periodic states with certain periods rem
stable. They are then expected to be observable under ap
priate experimental conditions. As an example we quote
1-6
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experiments of Ref.@14# for which the appropriate paramete
values are close to Eq.~24! that we use throughout this se
tion. It is reported that for a control parameter correspond
to h50.4 in our theory, periodic modulations of the direct
orientation are observed. Indeed this value falls into
range where ARs are unstable but some periodic states
expected to be stable. Concerning the periodicity, the
dency towards shorter wavelengths with increasing volt
reported in Ref.@14# is consistent with our results.

B. 2D modulated structures

We now proceed to investigate how the system evol
once the periodic states are destabilized at small valuesh,
that is, once we cross to the left of the dashed line in Fig
For this purpose we have used a pseudospectral algor
that simulates the time evolution of Eqs.~3! and ~4!, which
we describe briefly in the following. The linear part of th
equation is tranformed into Fourier space and the anal
formula for its time evolution is implemented in the alg
rithm. For the nonlinear part we work in real space and
tegrate it in time using a variation of the Euler method. W
use periodic boundary conditions in both space dimensio
which are practically enforced by the use of Fourier mod
We typically use 1283128 modes in the two space directio
while our physical space has dimensions 64364 units. Due
to the special treatment of the linear part, pseudospec
algorithms allow for a relatively large time step. We typica
takedt50.05 when we use parameter values~24!.

We start a simulation of Eqs.~3! and~4! with a state that
is periodic inx, e.g., with period 9.14. The state is stable
the parameter range given in Eq.~27!. When we reduce the
field h slightly below the value 0.30, we find that the patte
is destabilized and modulations along they direction appear.
The pattern becomes periodic in both spatial dimensions.
give an example of such a state in Figs. 6 and 7, where
fields uAu andf are shown, respectively. The state describ
modulations in 2D and has no defects. It was obtained
h50.28. We note that the state in Figs. 6 and 7 is not fu
static. It persist for a long time but it is eventually modifie
through the creation of defects. The system presents pe
tent dynamics until the end of our simulation, neverthele
the 2D correlations are preserved to a large extent.

In general, the 2D modulated states reached slightly
low the destabilization of 1D periodic modulations are de
cate and we have not been able to find a truly static one.
near-periodicity of the final states in both spatial directions
readily seen in the figures resulting from our simulations

An interesting point is that the defects that are typica
created in these processes also show strong 2D correlat
In fact a slightly disordered defect lattice is the usual o
come of such numerical simulations. An example of a r
sonably developed defect lattice is presented in Fig
through the fielduAu. It was obtained by starting the simula
tion with a periodic state with period 9.14. We used the va
h50.27 and the other parameters as in Eq.~24!. The initial
1D periodic state is then unstable and evolves into the de
lattice. The time evolution shows that the state has so
substantial dynamics but it always remains close to the
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ture of Fig. 8. Finally, in Fig. 9 we give thef field of the
defect lattice of Fig. 8. Thef field is predominantly varying
in the x direction with small modulations iny.

On further reducing the parameterh the resulting pattern
becomes progressively more disordered. A defect cha
state is eventually obtained for small values of the parame
In Fig. 10 we show such a state forh50.1. These defect-
chaotic states deserve to be studied on their own right b
full investigation of this problem is beyond the scopes of t
present paper.

It is not easy to predict in what way the states that
study here would appear in an experiment. Details of

FIG. 6. A two-dimensional periodically modulated pattern wit
out defects from a simulation of Eqs.~3! and~4! for the parameter
values~24!, c15c251, andh50.28. Initial conditions: a slightly
perturbed periodic modulation state with period 9.14. Shown i
gray-scale representation of the fielduAu. White corresponds to the
maximum value (uAu50.85) and black corresponds to the minimu
(uAu50.12). The physical dimensions of the space are 64364 and
we have used periodic boundary conditions.

FIG. 7. The fieldf for the state of Fig. 6. White corresponds
the maximum value and black corresponds to the minimum va
(fm560.998).
1-7
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experimental procedure could be important and the final
sult can be complicated as is indicated, e.g., by Fig. 7 in R
@14#, where roughly periodic states without defects a
found. In order to observe defect lattices in homeotro
cells, one should remain at small values of« so that the
director angle does not become very large. Otherwise a t
sition to CRAZY rolls occurs first, which entails formatio
of disclinations in the director field@15,14#. Also, at higher
values of«, mean-flow effects not included in our simp
description become important.

Let us describe the protocol of a numerical simulatio
which may give some guidance for experiments. The sim

FIG. 8. A reasonably developed defect lattice from simulatio
of Eqs. ~3! and ~4! for the parameter values~24!, c15c251, and
h50.27. Initial conditions: a slightly perturbed periodic modulati
state with period 9.14. Shown is a gray-scale representation ofuAu.
White corresponds to the maximum value and black correspond
the minimum (uAu50). The state is dynamic but always remai
close to that shown. The physical dimensions of our space
64364 and we have used periodic boundary conditions.

FIG. 9. The fieldf for the state of Fig. 8. White corresponds
the maximum value and black corresponds to the minimum va
03170
-
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lations are performed on a 64364 domain. We start at a field
h above hAR (h50.7) with small spatially random initia
conditions of the fieldsA,f. Experimentally this corre-
sponds to jumping from below the EC threshold directly in
the region of stable ARs. Typically, large domains with bo
AR states appear, separated by walls in thex direction. We
then jump toh50.4, where ARs are destabilized while d
fects are created and a state with 2D correlations sets in.
final state is roughly periodic with period 12.8 in thex direc-
tion ~5 periods in the domain! and 16 in they direction ~4
periods in the domain!. The defects are also roughly ordere
in a lattice. After this we increaseh gradually in steps of
dh50.02 and let the system relax in every step for 1000 ti
units. Although the system never relaxes to a static state
observe clearly correlations in both spatial directions w
the defects approximately ordered in arrays untilh50.44 is
reached. Forh>0.46 the defects annihilate and the syste
relaxes to a static 1D periodic state with period 12.8. T
process described above seems robust in our simulati
Note the interesting fact that there is a range of stable co
istence of the fully ordered 1D state~it is stable down toh
50.42) and the 2D solution.

Defect lattices have in fact been observed in planar
@26,27# at fairly high frequencies. A theoretical descriptio
for these systems by a much more elaborate quantita
theory has been developed recently@20#.

V. STATIC CHEVRONS

Here we will relax the conditionc15c251 by reducing
c1 ~slightly! below 1. This has no influence on the 1D sol
tions and their stability with respect tox dependent fluctua-
tions and increases the range of stability with respect ty
variations. In fact the critical value ofh for the zigzag desta-
bilization of the periodic solutions~dashed line in Fig. 3! is
reduced. For example, the period 9.14 is stable in the ra

s

to

re

.

FIG. 10. A disordered state: gray-scale representation of
field uAu. The parameter values used are~24!, c15c251 and h
50.1. The space dimension are 64364 and we have used periodi
boundary conditions.
1-8
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0.19,h,0.74, when c150.9, c251, ~28!

which should be compared to Eq.~27!. For values ofh be-
yond the instability the states that we obtain are similar
those found above forc151. Namely, we observe state
with 2D order close to the instability point~with some hys-
teresis!, which get progressively less ordered ash is de-
creased. Whenc1 is decreased further the stable range of
periodic solutions extends to progressively lower values oh.
In fact, for c1,0.77 the 1D solutions with period 9.14 a
stable down toh50.

For h50 we obtain a static pattern containing lines~or
bands, i.e., multiple lines! of defects along they direction,
which resemble the usual chevron states, except that t
are dynamic. In Figs. 11 and 12 such a solution is prese
for c150.9. The defects~zeros ofuAu) are located at the dar
points in Fig. 11. Within one band, all defects have the sa

FIG. 11. Static chevron state, gray-scale representation of
field uAu. The parameter values used are~24!, c150.9, c251, and
h50. The physical dimension is 64364 and we have used period
boundary conditions.

FIG. 12. The fieldf for the static chevron state of Fig. 11.
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topological charge and this is alternating from band to ba
The dark regions between defect bands imply a small va
of uAu. As one sees from Fig. 12 the fieldf varies periodi-
cally essentially only inx, and thus is very reminiscent of th
1D patterns discussed before. We call these new patt
‘‘static chevrons.’’ They are formed from random initial con
ditions.

The static chevrons persist for small nonzero values of
parameterh. If we let the chevron states be created forh
50 and then increaseh the static chevrons persist up toh
<0.015 for the parameters used here. Increasingh further
(h50.02) we observe that more defect bands are crea
that is, we have chevrons with a shorter period, but these
now the dynamic chevrons presented previously forc151
@17,28#. For even larger values ofh one reaches the muc
less correlated defect chaotic state discussed before. Foc1
closer to 1 the correlations become weaker.

To gain an understanding of static chevrons we first n
that the states between the defect bands should be interp
as ~approximately! homogeneous states with nonzero wa
numberP in the y direction, i.e., with complex amplitude

A5A0e6 iPy, ~29!

where the sign in the exponent alternates between neigh
ing regions and the magnitude ofP is related to the numbe
of defectsr per unit length in one band through the relatio

r5
P

p
. ~30!

This follows directly from the fact that each defect contri
utes a phase change of62p, depending on its topologica
charge. In the simulations we find thatf andP take values
close to

fA56
1

A12c1
2

and PA5c1fA ~31!

in the region between the defect bands, whileA0 is small as
was already mentioned.

The uniform solutions are described by equating the rig
hand sides of Eqs.~7! to zero. The resulting cubic equatio
for f0 can be written as

~f02c2P!322f0~12c1c2!~f02c2P!2

1@~11c2
222c1c2!f0

22c2
2#~f02c2P!1hc2

2f050.

~32!

In the limit h→0 one of the solutions tends to

A0
2512

11c2
222c1c2

c2
2

f0
2 , f05Pc2 ~33!

and the other two tend to

A050, f05c1P6A12P2~12c1
2!. ~34!

e

1-9
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KOMINEAS, ZHAO, AND KRAMER PHYSICAL REVIEW E 67, 031701 ~2003!
Here one has to impose the additional restriction t
f0 /(f02c2P).0, since otherwiseA0

2 is not positive forh
slightly away from zero. In Fig. 13f is sketched for these
limiting solutions as a function ofP ~solid lines!. Solution
~33! is the continuation of the NRs to nonzeroP. Similarly,
Eq. ~34! represents the continuation of ARs. The two lin
join at pointB in Fig. 13.

We can now see that the states between the defect b
given in Eq.~31! correspond~approximately! to the contin-
ued ARs of Eq.~34! with the maximaluf0u. Thus the defect
bands connect between the two symmetry degenerate
sions of this state. A simple stability analysis explains w
this state is selected. We writeA5A01a andf5f01w and
linearize Eqs.~3! and ~4! in a,w. For A050 the two equa-
tions separate and we obtain the following expression for
growth rate of the mode involvinga:

ts512sx
22sy

212c1c2f0sy2c2
2f0

2 . ~35!

One easily checks that all states are unstable against flu
tions along y except for state~31!, which is marginally
stable. The latter is denoted by the letterA in Fig. 13.

The static chevron states that are periodic and desc
spatial oscillations between states~31! need not be them
selves marginally stable. On the contrary, they are num
cally found to be quite robust. This observation is in agr
ment with the results of Sec. IV A that the 1D periodic sta
are stable even for parameter values for which the unifo
states are unstable.

The effect of the value ofc1 on the chevron states i
rather profound. This is seen by the~approximate! relation
giving the density of defects in the chevrons, which can
found using Eqs.~30! and ~31!:

r5
c1

pA12c1
2

. ~36!

FIG. 13. The solutions of Eq.~32! ~with A0
2.0) in the (P

2f0) plane for two values of the fieldh50 ~solid line! and h
50.1 ~dashed line!. The parameter values arec150.9,c251. The
point A has coordinatesfA51/A12c1

2,PA5c1fA and the pointB
hasfB5c2 /A11c2

222c1c2, PB5fB /c2.
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Thus, asc1 approaches 1 the defect bands become broa
~the separation between defects inside a band is rather i
pendent of parameters!. In the limit c1→1, one expects ex-
istence of an infinite lattice of defects with the same polar
but this is not accessible numerically, and presumably a
not experimentally. On the other hand, asc1 decreases, the
number of defects per unit length decreases quickly reach
a situation with a single chain in a band. Decreasingc1 fur-
ther one reaches a critical value below which no defects
created. Instead one has the 1D periodic modulations with
defects, which are here stable also forh50 ~see above!.

We have mentioned already that static chevrons persis
slightly nonzeroh. In order to understand the defect-fre
regions for this case we have studied the homogeneous
lutions as obtained from Eq.~34!. In Fig. 13 we also show
f0 for the caseh50.1 ~dashed!. Analyzing the stability we
found that there is a small interval around the states w
maximal uf0u, which are stable. This shows that the disa
pearance of static chevrons for increasingh is not a result of
the homogeneous regions becoming unstable, but rathe
defect bands destabilize, which is also observed in sim
tions.

VI. CONCLUDING REMARKS

Motivated in particular by experiments in electroconve
tion in homeotropically aligned nematics@14,15#. We have
studied some classes of modulated solutions of the Ginzb
Landau equation for the complex order parameterA describ-
ing the bifurcation to a stationary roll pattern, coupled to
weakly damped~or even undamped! homogeneous modef
describing the orientation of the in-plane director, see E
~1! and~2! ~unscaled! or Eqs.~3! and~4! ~scaled!. The most
important parameterh in these equations gives the ratio
the aligning torque on the director over the destabilizi
torque of normal rolls. The latter is proportional to the s
percriticality parameter«. Another important parametern in
the equations characterizes the action of the gradient of
in-plane director on the phase of the rolls, which can
controlled experimentally by varying the frequency. O
study is relevant forn.0, which is the case in the uppe
frequency conduction range and presumably also in the
electric range@18#.

The solutions we considered are characterized by mo
lations in the direction perpendicular to normal rolls~parallel
to the wave vector!. There exists a surprisingly rich spectru
of stable solutions of this type even in the range of cont
parameter, where most homogeneous states have lost s
ity. The simplest type has only variations in the direction
the wave vector~1D structures!. When such variations aris
they lead to the creation of defects, except in a small con
parameter region, where 2D defect-free modulations may
ist metastably. The solutions with defects range from ess
tially fully spatially ordered defect lattices to defect cha
with various degrees of spatial correlations. Their detai
study appears interesting, but is beyond the scope of
paper. The complexity of the solutions, as well as their d
namics, generally increase with decreasingh. For very small
values ofh, however, defects show the tendency to ord
1-10
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MODULATED STRUCTURES IN ELECTROCONVECTION . . . PHYSICAL REVIEW E67, 031701 ~2003!
along chains~or bands! yielding chevron structures. On
mechanism for the generation of dynamic chevrons has b
related to a Turing instability@27,28#. We have found for
c1,1 a new type of fully ordered, static chevrons that a
pear more related to the 1D structures.

Focusing on the in-plane (5 ĉ) director field, the modu-
lations occur along the direction of prealignment of the
plane director~from this point of view they give rise to
‘‘bend’’ distortions!. In fact, there is a long history of obse
vations of such modulated states under an electric field
highly doped MBBA @29–32# and other nematic material
@33,34# at high frequency, often without detectable conve
tion rolls. They come under the name of ‘‘wide domain
@29,30,33# or ‘‘prechevrons’’ @31,32#. Since such structure
cannot be explained purely statically, it seems reasonab
assume that they are secondary structures of the type
cussed here. The mechanism for the generation of the
mary roll pattern, which may not be visible, is presumab
different from the usual Carr-Helfrich mechanism. In fact,
was shown that the driving mechanism persisted above
nematic-isotropic transition@32#. Moreover, in Ref.@33# it
was shown that a treatment of the bounding plates by
sides led to a considerable increase of the frequency ra
where the wide domains appeared. These findings, which
consistent with some old results@35#, indicate that an isotro-
pic mechanism with rolls confined to the boundaries is
volved.

It was found that even after the wide domains ha
formed the usual electroconvection would set in at the
pected threshold@31,32#. In the dielectric regime this would
lead directly to perfectly ordered chevrons that have an
pearance like the static chevrons presented above.

While states modulated only along the direction of t
wave vector have been observed to some extent, the o
vation of corresponding two-dimensional modulations wi
out defects is lacking. This may be due to the small para
eter range, where such 2D modulations occur and a
because of their apparent metastability. An experimental
fort in this direction appears interesting. The present res
suggest that the objective should be to observe success
the 1D and 2D modulations and the chevron states and to
if they can be related to each other according to the pre
theory.
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Equations~3! and ~4! also allow for solutions that are
modulated only along the rolls~perpendicular to the pre
alignment of the in-plane director, giving rise to a ‘‘splay
distortion!. Then the phase of the patterning mode~i.e., the
phase ofA) comes into play, and the periodic solutions
fact correspond to zigzag patterns. Such states are of
evance for smaller values ofn, in particular forn,0. Near
the zigzag instability of normal rolls, which occurs ath51
2n, and thus precedes the transition to abnormal rolls
n,0, the periodic patterns are unstable. For smaller val
of h ~larger «) there are various types of periodic pattern
The scenario is enriched by the fact that the usual def
~point dislocations! can extend in the direction perpendicul
to the rolls to form phase slip lines@21#.

In order to extend the treatment to larger« one has to use
more complicated equations derivable from an extended n
linear analysis, which includes in particular mean flow. F
planar convection in the conduction regime the analysis
been carried out and relevant solutions involving in partic
lar realistic defect lattices have been studied@20#. For the
dielectric regime an extended weakly nonlinear study w
presented in Ref.@18#. The system appears interesting
view of its parametersc15c25n50.98 calculated under ne
glect of flexoelectric effects, which are of more relevance
the dielectric regime~note that in Ref.@18# theci correspond
to ourCi). There is hope to find static chevrons if the alig
ing torque could be made sufficiently small by applying
destabilizing magnetic field. One might use this techniq
also in the conduction range, wherec1 is substantially
smaller than 1@20#. However, one may then have to includ
higher-order terms in Eq.~4!.
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@2# T. Börzsönyi, A. Buka, A.P. Krekhov, O.A. Scaldin, and L
Kramer, Phys. Rev. Lett.84, 1934~2000!.

@3# M.A. Scherer, G. Ahlers, F. Ho¨rner, and I. Rehberg, Phys. Re
Lett. 85, 3754~2000!.

@4# L. Kramer and W. Pesch, inPhysical Properties of Liquid
Crystals, edited by D. A. Dunmur, A. Fukuda, and G. R. Luc
hurst ~EMIS Datareview Series, IEEE, New York, 2001!,
Vol. 1.

@5# Pattern Formation in Liquid Crystals, edited by Á. Buka and
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